Variational methods for a class of nonlocal functionals
نویسندگان
چکیده
منابع مشابه
A class of variational functionals in conformal geometry
We derive a class of variational functionals which arise naturally in conformal geometry. In the special case when the Riemannian manifold is locally conformal flat, the functional coincides with the well studied functional which is the integration over the manifold of the k-symmetric function of the Schouten tensor of the metric on the manifold.
متن کاملA Survey of Direct Methods for Solving Variational Problems
This study presents a comparative survey of direct methods for solving Variational Problems. Thisproblems can be used to solve various differential equations in physics and chemistry like RateEquation for a chemical reaction. There are procedures that any type of a differential equation isconvertible to a variational problem. Therefore finding the solution of a differential equation isequivalen...
متن کاملStability in a class of variational methods
The purpose of this work is to investigate the stability property of some models which are currently used in image processing. Following L. Rudin, S.J. Osher and E. Fatemi, we decompose an image f ∈ L2(R2) as a sum u+ v where u belongs to BV(R2) and v belongs to L2(R2). The Banach space BV is aimed at modeling the objects contained in the given image. the optimal decomposition minimizes the ene...
متن کاملA numerical technique for solving a class of 2D variational problems using Legendre spectral method
An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...
متن کاملInterior Methods For a Class of Elliptic Variational Inequalities
We consider the application of primal-dual interior methods to the optimization of systems arising in the finite-element discretization of a class of elliptic variational inequalities. These problems lead to very large (possibly non-convex) optimization problems with upper and lower bound constraints. When interior methods are applied to the discretized problem, the resulting linear systems hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1999
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(99)00061-9